
2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 1/20

DerekCresswell / GameDesign11 Public

Code Issues 5 Pull requests Actions Projects 4 Wiki Secur

GameDesign11 / 3 Top Down Arcade / 2 PlayerInput.md

DerekCresswell
Third half of top down review
History

2
contributors

master

Top Down Arcade Game
This is where we will begin adding in player interaction to our game with movement and
shooting.

Capturing Inputs

Before we start writing some scripts make sure you add a scripts folder to your project.

Put in a new script and let's call it "PlayerMovement". Then open that up.

Unity has a very convenient way for us to get input with the "Input Class". On this class
there are two main functions we want. "GetAxis" for movement and "GetButton" for button
presses.

To use these we simply need to call the function from the Input class (just like
Debug.Log). In the case of GetAxis we pass in a string of which axis we want to get. For

us, the ones we'll use are "Horizontal" and "Vertical" which by default tell us if the
player is pressing "WASD" or the arrow keys.

For GetButton , which we'll use a bit later, we pass in a button name and the function will
tell us whether that button is pressed.

Note
The names of these axes are set through the "Input Manager". You can also add new
ones. We will talk more about this in a section later on.

https://github.com/DerekCresswell
https://github.com/DerekCresswell/GameDesign11
https://github.com/DerekCresswell/GameDesign11
https://github.com/DerekCresswell/GameDesign11/issues
https://github.com/DerekCresswell/GameDesign11/pulls
https://github.com/DerekCresswell/GameDesign11/actions
https://github.com/DerekCresswell/GameDesign11/projects?type=beta
https://github.com/DerekCresswell/GameDesign11/wiki
https://github.com/DerekCresswell/GameDesign11/security
https://github.com/DerekCresswell/GameDesign11
https://github.com/DerekCresswell/GameDesign11/tree/master/3%20Top%20Down%20Arcade
https://github.com/DerekCresswell
https://github.com/DerekCresswell
https://github.com/DerekCresswell/GameDesign11/commit/363077e28037de6fb07c053e70e448b829fc2655
https://github.com/DerekCresswell/GameDesign11/commits/master/3%20Top%20Down%20Arcade/2%20PlayerInput.md
https://github.com/DerekCresswell/GameDesign11/commits/master/3%20Top%20Down%20Arcade/2%20PlayerInput.md?author=DerekCresswell
https://github.com/DerekCresswell/GameDesign11/commits/master/3%20Top%20Down%20Arcade/2%20PlayerInput.md?author=KaelPearson
https://docs.unity3d.com/ScriptReference/Input.html
https://docs.unity3d.com/ScriptReference/Input.GetAxis.html
https://docs.unity3d.com/ScriptReference/Input.GetButton.html
https://docs.unity3d.com/Manual/class-InputManager.html

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 2/20

Player Movement

To start let's make sure we know how to use the Input class. We will start by just printing
out our key press then modify it to actually move our player.

Printing Movement

So in our PlayerMovement script let's simply print out the horizontal axis to start.

In our Update function let's add the following.

Here we've stored the value returned from GetAxis to a float called hAxis . The
GetAxis function returns a float and more specifically a number between -1 and 1.

This is to inform us of the magnitude of input as well as direction. What we mainly care
about is the direction because without using a joystick our key presses don't have a "half
pushed" mode, they are simply down or up.

The direction is referencing the grid used by Unity for transformations. Basically meaning
the sign of GetAxis (positive or negative) relates to the grid in Unity where positive
horizontal axis means moving right on the grid.

Now to test that code we've written.

First save the script and return to Unity. Go to your "Player" prefab and add the
"PlayerMovement" script to it. Then run the game and watch the console as you press A
and D or Left and Right arrow keys.

Hopefully this should illustrate how the GetAxis function works. Please try to change that
code to show the vertical axis too and try that out.

Moving The Player

Now we can actually use our input to move our player object around the game world.

First let's think of how we can do this.

Our player's position in the game is based on the objects Transform component. However,
we have a Rigidbody on our player which we use for collisions. This means we need to
move the player using the Rigidbody.

void Update() {

	 float hAxis = Input.GetAxis("Horizontal");

	 Debug.Log(hAxis);

}

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 3/20

In our script let's start by storing the vertical and horizontal axis values in a "Vector2" that's
declared above the Update function.

We need to use a Vector2 so we can store two numbers, an X and Y position. This is not
only convenient but also necessary because other parts of Unity require data to be in this
form.

Declare it just like a normal variable, just with Vector2 as the type, and you can access it's
X and Y value simply by using .x and .y .

That takes care of where we want to move to now we need to actually move.

As said before, we have to move the Rigidbody of the player. To start add a reference to
the Rigidbody of the player using the Start function.

A very key thing to note is that since the Rigidbody is based on physics we need to update
it in what's called the "FixedUpdate". This is very similar to Update but it's for physics.

We will be using a function called "MovePosition" to move our Rigidbody to a given
position. Put in the following into your script :

Vector2 movement;

void Update() {

	 movement.x = Input.GetAxis("Horizontal");

	 movement.y = Input.GetAxis("Vertical");

}

Rigidbody2D rb;

void Start() {

	 rb = GetComponent<Rigidbody2D>();

}

void FixedUpdate() {

	 Vector2 moveTo;

	 rb.MovePosition(moveTo);

}

https://docs.unity3d.com/ScriptReference/Vector2.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.FixedUpdate.html
https://docs.unity3d.com/ScriptReference/Rigidbody2D.MovePosition.html

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 4/20

Of course this doesn't work as is. We need to figure out where we want to move to
ourselves because MovePosition will move us straight to the spot and not smoothly
transition. We need our current position (this time it's actually the Rigidbody's position)
plus where we want to go (the movement vector we made)

What's this Time.fixedDeltaTime thing? This is simply a float that tells us how long it's
been since we last ran FixedUpdate . It's not needed but makes your code run a bit
smoother.

Hop back to the game and try this out.

Now we'll likely need to adjust that speed. First we will set this up and then make it
editable from Unity rather than our text editor.

To start we know that we are adding a number between -1 and 1 to our movement vector.
Because of this we can declare a max speed and use the value from our axis to give us a
ratio of that max speed.

Start by adding in a new float and call it maxSpeed or similar. We then want to multiply
our moveTo vector by that number.

void FixedUpdate() {

	 Vector2 moveTo = rb.position + movement * Time.fixedDeltaTime;

	 rb.MovePosition(moveTo);

}

void FixedUpdate() {

	 float maxSpeed = 1f;

	 Vector2 moveTo = rb.position + movement * Time.fixedDeltaTime * maxSpeed;

	 rb.MovePosition(moveTo);

}

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 5/20

Obviously setting maxSpeed to 1 does nothing to our speed. You could open your script
and change this to a different value but there is a better way.

So far we've only worked inside the Update , FixedUpdate , and Start function but if you
look up you'll see that these are inside a class named after the file. One very useful part of
this class is that we can declare a variable outside of functions and set the value of that
variable in Unity.

To start move the declaration of maxSpeed out of the update function but still within the
class, in this case called PlayerMovement . It doesn't matter where about you place this but
to make your file look nice, and remain readable, variables are typically the first thing in a
class. Like so :

Now this will still work, but we can't change the value of maxSpeed with Unity yet. To do
this we need to make the variable "public". We just need to put public in front of the
variable. Like :

Now save that and return to Unity. Click on your Player object and under the
PlayerMovement script you should see an option for "maxSpeed". Try setting this value
and playing the game!

Now a fun thing you can try to illustrate the usefulness of this public keyword would be
to put a second Player prefab into your game and give the second one a different
maxSpeed value to the first.

When you play the game you can see that even though these two objects use the same
script they can have different values. This means that, just like prefabs, we can make one
script and use it as many times as we like. Also using public speeds testing up tenfold. It's
also good to note that anything you can turn into a variable can be public . Use it
whenever you want to quickly alter values.

Following The Player With The Camera

public class PlayerMovement : MonoBehaviour {

	 float maxSpeed = 1;

public float maxSpeed = 1;

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/public

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 6/20

With our player moving it is obvious that the camera needs to follow the player otherwise
we cannot see the player. There is a really simple way to do this but really only works when
our player does not rotate.
All we need to do is "child" our Camera object to our player. This will make the transform
of the camera relative to the player rather than the center of the world.

Now we want the camera's transform to be 0 for X, 0 for Y, and a negative number for Z.
This is because we want the camera centered on the player, that's the X and Y, but it needs
to have a negative Z as to not be on the same plane as the player. That is to say :

If the camera's Z is also 0 it will be at the same level as the player and cannot see it. Just
like you cannot see something directly beside you.

If you do want your player to rotate (like if you are going to use the MouseAim script) you
will need to add this simple code to a script and place it on the camera.

public class CameraFollow : MonoBehaviour {

	 // Set this to the player in the game (NOT the prefab)

	 public GameObject player;

	 // Stores the difference between the player and camera

	 Vector3 offset;

	 void Start() {

	 	 offset = transform.position - player.transform.position;

	 }

	 // Update is called once per frame

	 void Update() {

	 	 // Update the cameras position

	 	 transform.position = player.transform.position + offset;

	 }

}

https://docs.unity3d.com/Manual/Transforms.html
https://docs.unity3d.com/Manual/class-Camera.html
https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Images/ChildedCamera.JPG
https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Library/MouseShooting.cs
https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Library/CameraFollow.cs

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 7/20

If you use this script, you must do two things.

Do not have the camera childed to the player for this
Place the camera where you want it in relation to the player before you start the
game.

Use the above code for now, the version in the Library is slightly more advanced to allow
for a smoother feel.

This will be what is used for the rest of these lessons, though it does not affect you very
much.

Shooting

We've got a moving player, now let's try to add a basic shooting mechanic to our game.
What we are going to build here is a basic four point shooting system. What that means is
we can shoot up, down, left, and right.

This will be expandable to an eight point system (four point plus diagonals) and included
in the script library will be a mouse shooting script (aim with the mouse 360 degrees
around your player).

Don't worry about that yet though, onto the basic four point system.

Setting Up Button Inputs

First thing to do is to make a new script called "PlayerShoot". Make sure to put it into the
Scripts folder. Open it up.

Now this script will be controlled with the arrow keys by default. Which means we need to
change our inputs because currently the arrow keys can move our character as well.

This is because the arrows keys are by default to set to be in the Horizontal and Vertical
axes. The same ones we used in our movement script.

We need to open up our input manager. In the top left go to "Edit", then down to "Project
Settings". Once that opens, click on "Input".

https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Library/CameraFollow.cs
https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Library
https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Library/MouseShooting.cs

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 8/20

This is the input manager. In here we can change which buttons correspond to which axis.
We need to move the arrow keys from the Horizontal and Vertical axis to new axes that will
be for shooting.

Click on "Horizontal" from the list of axes. Find "Negative Button" and "Positive Button"
and delete their corresponding keys ("left" and "right" in this case). It's ok that those two
fields are now empty because these axes have alternate keys specified.

Do the same for the "Vertical" axis and then play your game. You will notice that the arrow
keys no longer move the player, but WASD does move it.

https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Images/ProjectSettings.JPG
https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Images/RemoveArrowInput.JPG

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 9/20

With that we are good to go and can start writing a script for shooting.

Printing Shooting

Just like with movement we are going to start simple by just detecting our key presses.
Make a new script (in the scripts folder) and name it "PlayerShoot" or similar.

In the Update function we need to detect our key presses similar to our movement but
not exactly. We are going to use the method "Input.GetKeyDown" which uses the key
names rather than an axis name.

This function returns a boolean that is true if the key was pressed that frame and false
otherwise. Because of this boolean we can stick the function directly into an if
statement. Let's try printing something if the player press the key "up". Put this in the
Update function just like before.

https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Images/RemoveArrowInput.JPG
https://docs.unity3d.com/ScriptReference/Input.GetKeyDown.html

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 10/20

Put this script onto your player and try running the game. You should be able to move with
WASD and by pressing ← the console will say "Left".

Perfect. Now we just need to expand this to use all four arrow keys. Let's start by adding in
the right arrow key. To do this, add an else if to our current code. Then changed which
key we are using and the output.

We want to use the else statement here because you cannot move left and right at the
same time. This makes it so only one can run each frame. Go ahead and try this out.

Next we add the ↑ and ↓ keys to this. We want to duplicate what we currently have so
that left and right are an if else and up and down are a separate if else .

void Update() {

	 if(Input.GetKeyDown("left")) {

	 	 Debug.Log("Left");

	 }

}

void Update() {

	 if(Input.GetKeyDown("left")) {

	 	 Debug.Log("Left");

	 } else if(Input.GetKeyDown("right")) {

	 	 Debug.Log("Right");

	 }

}

void Update() {

	 if(Input.GetKeyDown("left")) {

	 	 Debug.Log("Left");

	 } else if(Input.GetKeyDown("right")) {

	 	 Debug.Log("Right");

	 }

	 if(Input.GetKeyDown("up")) {

	 	 Debug.Log("Up");

	 } else if(Input.GetKeyDown("down")) {

	 	 Debug.Log("Down");

	 }

}

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 11/20

Now let's move on to turning this into actually shooting a bullet.

Making A Bullet Prefab

Before we can shoot a bullet, we need to make a bullet. First let's outline what we are
actually about to do.

We are going to make a bullet prefab. Then in our PlayerShoot script we will spawn an
instance of the bullet prefab and give it a velocity. With that in mine we can make a simple
bullet prefab.

In your scene make a new sprite (just like with the player prefab) and name it "Bullet".
Set the sprite to our white circle sprite and give it a color if you want.
Set the scale of this sprite (under the transform) to around 0.5 or whatever looks
best in comparison to our player.
Add a Rigidbody 2D to the bullet.
Add a Circle Collider 2D to the bullet. Make sure the size is right.

Also make sure you tick the box that says "Is Trigger".

https://github.com/DerekCresswell/GameDesign11/blob/master/1%20Rube%20GoldBerg%20Machine/Assets/WhiteCircle.png
https://docs.unity3d.com/ScriptReference/Collider2D-isTrigger.html
https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Images/BulletPrefab.JPG

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 12/20

What is this "Is Trigger"? Well when two Rigidbodies collide they create a collision and just
like real life they exert force on each other and get pushed back.

You can prove this later by unchecking "Is Trigger", when the bullet hits the enemy they are
thrown backwards and just kinda float away.

Using the bullet as a trigger means that we can detect a collision but the physics engine
doesn't make one. That means our enemy is hit by the bullet but does not get pushed
back.

Once you have that, make it into a prefab by dragging it into the "Prefabs" folder we
made.

You should be able to get rid of the bullet in the scene now and just keep the prefab.

Spawning A Bullet

Now that we have a basic bullet prefab we can start spawning it instead of just printing out
a direction. Open up the PlayerShoot script.

At the top of our script add in a new public variable of the type "GameObject". This will
be used to store our bullet prefab.

Save that and head back to Unity. If you click on the player prefab you will see the new
variable under the PlayerShoot script. Drag the bullet prefab into that slot. This way when
we run our game the variable bulletPrefab inside the PlayerShoot script.

Go back into our shooting script.

We are now going to replace the Debug.Log s inside our Update function with spawning a
bullet. To spawn a prefab we can use the "Instantiate" function from Unity.

The Instantiate function takes three arguments. The first is the actual prefab we'd like to
create. Next it needs a Vector3 containing the XYZ coordinates of the new objects
Transform. The third defines the rotation of the object as a "Quaternion".

Here we've omitted the other if statements as they are trivial.

public GameObject bulletPrefab;

void Update() {

	 if(Input.GetKeyDown("left")) {

	 	 Instantiate(bulletPrefab, transform.position, Quaternion.identity);

	 }

}

539 lines (362 sloc)

27.6 KB

https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/ScriptReference/Object.Instantiate.html
https://docs.unity3d.com/ScriptReference/Quaternion.html

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 13/20

Let's break this down a little. bulletPrefab refers to the variable we just made which is our
bullet prefab.

transform.position is the position of the player. transform refers to the transform

component on the "owner" of the script, in this case the Player. We then call .position to
get the Vector3 that is our player's XYZ coordinates.

Quaternion.identity is a predefined constant that refers to "no rotation". You don't need

to worry too much about this as it is a high level math concept. Later we can show you an
easier way to adjust rotation.

Now go back to Unity and run your game.

As you press the arrow keys you will see bullets popping out of the side of your player.
Hardly bullets but still a great step!

Now we will work on two more things to make these bullets better.

Adding Force To Bullets

First thing about our bullets is that they are rather lame. They need to go fast and because
this is top down, gravity shouldn't affect them.

To solve the gravity issue simply open up the bullet prefab, scroll down to the Rigidbody
and set Gravity Scale to 0 .

This just says that gravity should not affect this object.

Next we need the bullet to shoot off into the distance.

Open up the PlayerShoot script. Add to our script a new function called "ShootBullet". This
should return void and take one "Vector2" as an arguement (This is the same as a
Vector3 but with only an X and Y).

Now we want this function to spawn a bullet and then give it some velocity based on
direction.

Start by moving our Instantiate line of code from our Update to here. But we want to
now set this equal to a variable. By doing this we hold a reference to the object we just
spawned.

void ShootBullet(Vector2 direction)

void ShootBullet(Vector2 direction) {

	 GameObject bullet = Instantiate(bulletPrefab, transform.position, Quaternion

}

https://docs.unity3d.com/ScriptReference/Quaternion-identity.html
https://docs.unity3d.com/ScriptReference/Rigidbody2D-gravityScale.html
https://docs.unity3d.com/ScriptReference/Vector2.html

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 14/20

This is no different to any variable you have seen. It's just that the value of the variable is
now a instance of the Bullet prefab.

Next we need to give the bullet some speed. To do this we need to add a force to the
Rigidbody. Unlike the Transform, we need to use the GetComponent method to use the
Rigidbody in our code.

That will look like this :

This certainly will look foreign. Time to break it down.

Rigidbody2D rb : We want to make a new variable of the Rigidbody2D type. This is
just a normal variable but the value of it is a Rigidbody2D .
GetComponent : This is simply a function that gets us a reference to a component of an

object. It must be called on an object, in this case the bullet.
<RigidBody2D> : This is part of the above function. It says we want to get

the Rigidbody2D component from the object.
() : That is just like a normal function's brackets.

In short, bullet.GetComponent<Rigidbody2D>() will give us the Rigidbody that is on our
bullet.

Now with that we can add a force to the bullet with the conveniently named "AddForce"
function. This takes in a Vector2 as an arguement and applies it as a force to our object.

We have to call AddForce on the Rigidbody of the object. So use the rb variable we just
made.

void ShootBullet(Vector2 direction) {

	 GameObject bullet = Instantiate(bulletPrefab, transform.position, Quaternion

	 Rigidbody2D rb = bullet.GetComponent<Rigidbody2D>();

}

void ShootBullet(Vector2 direction) {

	 GameObject bullet = Instantiate(bulletPrefab, transform.position, Quaternion

	 Rigidbody2D rb = bullet.GetComponent<Rigidbody2D>();

	 rb.AddForce(direction);

}

https://docs.unity3d.com/ScriptReference/Rigidbody2D.AddForce.html

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 15/20

This will work but we don't have much control over the speed of the bullet. Let's make a
new public float at the top of your script and name it bulletSpeed .

Now we can just multiply the direction variable in our ShootBullet function by this new
speed.

bulletSpeed will likely need to be a rather large number.

Another way we could do this is by using "ForceMode2D.Impulse" like so.

"ForceMode2D.Force" (The default ForceMode) adds force over time to an object whereas
ForceMode2D.Impulse adds force instantly more akin to an explosion. This allows us to be

able to set a lower bulletSpeed .

Time to add a call to the ShootBullet function in the Update function instead of just
instantiating a bullet.

You will need to give the function call a direction. What we want to use is 1 to mean up /
right and -1 to mean down / left depending on if it's in the x or y spot.

Try to draw out the grid and figure out which directions to give to which key presses (You'll
have to pass it like new Vector2(X, Y)).

Don't simply guess and then look at the answer, go and try turning on the game and see if
it works. Playing and testing your game is perhaps the best thing you can do to learn.

Calling the ShootBullet function

One last thing to do here, promise it's quick.

Our bullets are hitting the Player's collider. Add this line into the ShootBullet function just
below instantiating the bullet.

public float bulletSpeed = 1;

rb.AddForce(direction * bulletSpeed);

direction *= bulletSpeed;

rb.AddForce(direction, ForceMode2D.Impulse);

Physics2D.IgnoreCollision(bullet.GetComponent<CircleCollider2D>(), GetComponent<BoxC

https://docs.unity3d.com/ScriptReference/ForceMode2D.Impulse.html
https://docs.unity3d.com/ScriptReference/Rigidbody2D.AddForce.html

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 16/20

Read through the line and see if you can make sense of it. If not, try using the Scripting API
page.

Deleting Bullets

Now what you may notice is that as we shoot a lot bullets the hierarchy fills up.

This is bad. Every time we create a bullet it will take resources to calculate the details about
the object and will have to do these every frame, forever.

We need to get rid of bullets once they are no longer needed. The first thing we should do
is destroy the bullet when it hits something.

Go ahead and add some walls to the scene so that we have something to hit with our
bullets.

Just add some sprites and give them a box collider.

https://docs.unity3d.com/ScriptReference/Physics2D.IgnoreCollision.html
https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Images/SpawnedBullets.JPG
https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Images/WallsSetup.JPG

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 17/20

To destroy a bullet when it hits something we need to detect a collision on the bullet.
Create a new script and name it "BulletDestroy" or similar.

We are going to use the built-in function from Unity called "OnTriggerEnter2D" for this.
This will be called automatically when our bullet collides with something.

Lucky for us this should be simple as we can just destroy when we hit anything.

Add into that function :

Note the lowercase g

The bullets should now disappear when they hit anything.

public class BulletDestroy : MonoBehaviour {

	

	 void OnTriggerEnter2D(Collider2D collision) {

	 }

}

Destroy(gameObject);

https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Images/WallsSetup.JPG
https://docs.unity3d.com/ScriptReference/Collider2D.OnTriggerEnter2D.html

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 18/20

There is a possibility that your bullets may collide with another bullet so there is one check
we should add to our BulletDestroy .

We can do this using "tags". These just put a name on an object more or less. We can then
use these tags to easily check if we collided with a bullet.

Open up the bullet prefab. At the top of the inspector there is a dropdown for tags. It
should say "Untagged".

Click on "Add Tag". This will open a new menu. There should be an empty list of tags. Hit
the plus button and add a tag called "BulletTag".

Now double-click on your bullet prefab to bring it back into the Inspector.

Click onto the tags as before but now add the "BulletTag". Save that and open up the
BulletDestroy script.

Around Destroy(gameObject); put an if statement. In the OnTriggerEnter function you
can see that there is a "Collider2D" passed in named "collision".

That Collision2D object has a variable we can access that contains the info of object we
collided with called "gameObject". On that we can access the objects tag.

It would look like this :

collision.gameObject.tag

https://docs.unity3d.com/Manual/Tags.html
https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Images/TagsInInspector.JPG
https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Images/AddNewTag.JPG
https://docs.unity3d.com/ScriptReference/Collider2D.html
https://docs.unity3d.com/ScriptReference/Collision2D-gameObject.html

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 19/20

Now we can compare if the object's tag to a string and see if it is not "BulletTag".

Now our bullets will not collide with other bullets.

Now that these bullets are working perfectly we can move onto actually doing bullet
things like dealing damage.

Bullet Lifetimes

Alright one more thing. This will be quick though, promise.

You might notice that if you miss one of these walls the bullet will never be destroyed as it
shoots off into infinity.

We need to destroy the bullet after some amount of time in case it never hits anything. We
can do this with a single line luckily!

In our BulletDestroy script add this to the Start function.

As before, we are using the Destroy function to delete our game object (in this case a
bullet). Lucky for us, Unity lets us pass in a float after the object we want to destroy. If
you give a value here, Unity will destroy the object after that many seconds.

Completely arbitrarily we've done two seconds here. Feels like if a bullet has not found a
target in two seconds, it likely missed.

In the next lesson we will go over making a script to track the players and enemies health.

On Your Own

void OnTriggerEnter2D(Collider2D collision) {

	 if(collision.gameObject.tag != "BulletTag") {

	 	 Destroy(gameObject);

	 }

}

void Start() {

	 Destroy(gameObject, 2);

}

2/22/22, 10:46 AM GameDesign11/2 PlayerInput.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/3 Top Down Arcade/2 PlayerInput.md 20/20

Try to expand the current system to let you shoot on the diagonals. Try out creating a
vector for the direction of the bullet, figuring out the values, then make a single call to
ShootBullet .

Also try adding a timer that limits how quickly you can shoot.

Note

GetKey is different from GetKeyDown , try looking it up in the manual.
Use Time.deltaTime to increment the timer.

After giving this a go you can look at KeyShooting.cs for an implementation of these two
features.

https://github.com/DerekCresswell/GameDesign11/blob/master/3%20Top%20Down%20Arcade/Library/KeyShooting.cs

