
2/22/22, 10:50 AM GameDesign11/5 Loops.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/2 Dice Game/5 Loops.md 1/6

DerekCresswell / GameDesign11 Public

Code Issues 5 Pull requests Actions Projects 4 Wiki Secur

GameDesign11 / 2 Dice Game / 5 Loops.md

DerekCresswell
Edited Dice game Loops
History

2
contributors

master

Dice Game
Here we will talk about loops in our code.

Loops

We've already seen functions in our code and how they hold blocks of code that we can
reuse.

Functions aren't always the best fit for our problems though. Lots of the time a loop better
suits our needs. Let's go over the two main types of loops we will use.

For Loops

The "For Loop" is used to repeat through a block of code a certain amount of times.

As usual let's get an example up and then walk through it.

The output for this would be :

for(int i = 0; i < 5; i++) {

	 Debug.Log("Hello World");

}

197 lines (143 sloc)

6.32 KB

https://github.com/DerekCresswell
https://github.com/DerekCresswell/GameDesign11
https://github.com/DerekCresswell/GameDesign11
https://github.com/DerekCresswell/GameDesign11/issues
https://github.com/DerekCresswell/GameDesign11/pulls
https://github.com/DerekCresswell/GameDesign11/actions
https://github.com/DerekCresswell/GameDesign11/projects?type=beta
https://github.com/DerekCresswell/GameDesign11/wiki
https://github.com/DerekCresswell/GameDesign11/security
https://github.com/DerekCresswell/GameDesign11
https://github.com/DerekCresswell/GameDesign11/tree/master/2%20Dice%20Game
https://github.com/DerekCresswell
https://github.com/DerekCresswell
https://github.com/DerekCresswell/GameDesign11/commit/13b10018cb594c11c4d3aa8445ce335db6e2092b
https://github.com/DerekCresswell/GameDesign11/commits/master/2%20Dice%20Game/5%20Loops.md
https://github.com/DerekCresswell/GameDesign11/commits/master/2%20Dice%20Game/5%20Loops.md?author=DerekCresswell
https://github.com/DerekCresswell/GameDesign11/commits/master/2%20Dice%20Game/5%20Loops.md?author=AshtonFurman
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/intro-to-csharp/branches-and-loops?tutorial-step=4

2/22/22, 10:50 AM GameDesign11/5 Loops.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/2 Dice Game/5 Loops.md 2/6

As we said, the for loop will execute a block of code a certain amount of times. In our case
printing "Hello World" five times.

Let's go over the three main parts of making a for loop which you can remember with
the mnemonic F.O.R. conveniently.

First
We need to initialize a variable that keeps track of how many times we've looped.

Typically you'll see int i = 0; . This is common because whole numbers (int) nicely
keep track of the number of loops as we don't need to worry about decimals. i is
typically used as it can stand for "iterator" though you can use anything. 0 is the start
value as computers actually start counting at 0, again you can set it to whatever and
sometimes you will want to.

This is value is only set once.

Operator
Than we need an operator to figure out if we should continue looping.

The second part of the statement, in this case i < 5; , will determine, via a boolean or
boolean statement, whether we continue looping. This can be whatever you want
again as long as it gives you a true or false value.

This is done every iteration of the loop before the code is executed.

Repeat
Lastly, if we do another loop we do something to our variable to progress the
loop.

The last bit of the statement in our case is i++ which simply increases i by one. You
can do whatever you here not just ++ (that feels like a trend).

This is done after the code is executed.

Now let's show a more visual way to think of a loop.

You can imagine :

turning into :

Hello World

Hello World

Hello World

Hello World

Hello World

for(int i = 0; i < 5; i++) {

	 Debug.Log("Hello World");

}

2/22/22, 10:50 AM GameDesign11/5 Loops.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/2 Dice Game/5 Loops.md 3/6

This misses some nuances of the loop but will do for our purposes.

Use loops to repeat code a certain amount of times or until a condition is met.

While Loops

A "While Loop" is really the same thing as the for loop except with a different
declaration.

A while loop only takes a boolean or boolean expression. For instance :

The output of this is :

This one is counting down for variety, no reason it couldn't do the same as the for loop.

Since there is not too much different between while and for loops we are going to
move right on to the next important part of loops.

Infinite Loops

int i = 0;

if(i < 5) {

	 Debug.Log("Hello World");

}

i++;

// Loop back to the if!

int i = 5;

while(i > 0) {

	 Debug.Log(i);

	 i--;

}

5

4

3

2

1

https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/statements

2/22/22, 10:50 AM GameDesign11/5 Loops.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/2 Dice Game/5 Loops.md 4/6

Infinite loops are dangerous. One wrongly placed > can quickly stop all of your code
execution.

These infinite loops are caused when the boolean statement given to the loop will never
become false. Our code will break because the computer will loop forever and never be
able to break out of the loop. Eventually the computer will run out of memory and decide
to exit your program with an error.

Here are two examples :

Go ahead and try running these. Don't worry your computer won't burst into flames, it will
just tell you that something is wrong.

When you get errors like this try stepping your code carefully. Often there is a single
character out of place. Other times you may need to look more at the overlying logic of
your code. Perhaps an if statement inside the loop has a loophole that will make it be
never true.

Loop Statement Keywords

There are two main statements used to control our loops, "break" and "continue".

These aren't too complex, can be very useful, and do exactly what they say.

Break

Break simply breaks out a loop. It is written simply as break; but it must be within a for
or while loop.

When the break is executed the loop is stopped where it is and program moves to after
the loop.

while(true) {}

// This should be fairly self explanatory.

int myInt = 5;

while(myInt < 0) {

	 myInt++;

}

// myInt is being incremented NOT decremented and will never be less than 0.

for(int i = 1; i < 10; i++) {

	 if(i == 5) {

	 	 break;

	 }

	 Debug.Log(i);

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/break
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/continue
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/break

2/22/22, 10:50 AM GameDesign11/5 Loops.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/2 Dice Game/5 Loops.md 5/6

The output of this will be :

As you can see once i == 5 we "break" out of the loop and non of the next iterations are
done.

Continue

Continue simply moves onto the next iteration of a loop. It is written as continue; but is
must be within a for or while loop.

continue does not stop the whole loop it only skips the rest of that iteration.

The output of this will be :

}

Debug.Log("The loop is over.");

1

2

3

4

The loop is over.

for(int i = 1; i < 10; i++) {

	 if(i == 5) {

	 	 continue;

	 }

	 Debug.Log(i);

}

Debug.Log("The loop is over.");

1

2

3

4

6

7

8

2/22/22, 10:50 AM GameDesign11/5 Loops.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/2 Dice Game/5 Loops.md 6/6

You'll notice that 5 is missing from the output as when i == 5 we "continued" onto the
next iteration.

On Your Own

Loops can seem simpler on the outside than perhaps the boolean logic we just went
through, but they can become very versatile.

Here's a few ideas to practice with.

1. Make a loop that prints only even numbers, then make it print only odd numbers.

2. Try putting a loop inside another loop and figure out how it prints out some numbers.

3. Print out a mathematical sequence of numbers. Exponential, the Fibonacci sequence,
multiples of x, or factorials perhaps.

9

The loop is over.

https://github.com/DerekCresswell/GameDesign11/blob/master/2%20Dice%20Game/4%20Logic.md

