
2/22/22, 10:49 AM GameDesign11/2 CodeStructure.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/2 Dice Game/2 CodeStructure.md 1/8

DerekCresswell / GameDesign11 Public

Code Issues 5 Pull requests Actions Projects 4 Wiki Secur

GameDesign11 / 2 Dice Game / 2 CodeStructure.md

DerekCresswell Reviewed Dice game Code structure History

 1 contributor

 master

Dice Game
Here we are going to write our first program.

Structure

To begin we need to know where to actually write our code.
In the Editor duh!
Not exactly we can't just put it anywhere in this file. For this we need to use the "Start()"
function.

Let's just talk a bit more about those functions.
The "Start" and "Update" functions are inside the class TestScript . How do we know this?
The {} !
You can more or less think of {} or curly braces as a container. When we make our class
we "open" a curly brace, put what we want in the class inside the brace, then "close" the
brace.
So if you look at the code below you'll notice after we "declare" our class we have a {
then at the bottom of the code a } . So everything between these two brackets is inside
the class TestScript .

171 lines (115 sloc) 12.1 KB

https://github.com/DerekCresswell
https://github.com/DerekCresswell/GameDesign11
https://github.com/DerekCresswell/GameDesign11
https://github.com/DerekCresswell/GameDesign11/issues
https://github.com/DerekCresswell/GameDesign11/pulls
https://github.com/DerekCresswell/GameDesign11/actions
https://github.com/DerekCresswell/GameDesign11/projects?type=beta
https://github.com/DerekCresswell/GameDesign11/wiki
https://github.com/DerekCresswell/GameDesign11/security
https://github.com/DerekCresswell/GameDesign11
https://github.com/DerekCresswell/GameDesign11/tree/master/2%20Dice%20Game
https://github.com/DerekCresswell
https://github.com/DerekCresswell
https://github.com/DerekCresswell/GameDesign11/commit/ee4ce87b5798404357ee8b1b891f8dbcd9225235
https://github.com/DerekCresswell/GameDesign11/commits/master/2%20Dice%20Game/2%20CodeStructure.md
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://docs.microsoft.com/en-us/dotnet/csharp/methods
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Update.html
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/intro-to-csharp/introduction-to-classes

2/22/22, 10:49 AM GameDesign11/2 CodeStructure.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/2 Dice Game/2 CodeStructure.md 2/8

This is what is contained within the class TestScript . Using this same logic we can apply it
to the Start() function. Look for the curly braces just after it.

Using The Scripting API

Now why do we want to use the Start function?
We're going to try out using the Unity Scripting API for this.
Say we were perusing through this code, and we stumbled across this function and didn't
know what it does. Well, we'd go to the Scripting API and search "Start", the name of the
function, up. When you do, you should be greeted by this :

public class TestScript : MonoBehaviour {

 // Use this for initialization
 void Start() {

 }

 // Update is called once per frame
 void Update() {

 }
}

void Start() {

}

https://docs.unity3d.com/ScriptReference/

2/22/22, 10:49 AM GameDesign11/2 CodeStructure.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/2 Dice Game/2 CodeStructure.md 3/8

This is a list of all the Start functions in Unity. Now we need to find the one we are
actually using in our script.
In this case we should look at the class we are using. In the last lesson we mentioned how
the TestScript class we made is "inheriting" from the MonoBehaviour class.
With this logic we can say that the Start function is part of the MonoBehaviour . When we
look at our search result, you can see that the seventh one down is "Monobehaviour.Start".
Click on that.

On this page, Unity tells us everything about MonoBehaviour.Start that we need to know.

Start is called on the frame when a script is enabled just before any of the Update
methods are called the first time. Like the Awake function, Start is called exactly once
in the lifetime of the script. However, Awake is called when the script object is
initialized, regardless of whether or not the script is enabled. Start may not be called
on the same frame as Awake if the script is not enabled at initialization time.

This might sound a little confusing as it is written by and for more experienced developers.
That is ok though, you'll begin to understand it better as we go along.
For now we will paraphrase.

The Start function is run as soon as the script becomes active in your game. It's only
ever called once.

https://github.com/DerekCresswell/GameDesign11/blob/master/2%20Dice%20Game/Images/ScriptingSearch.JPG
https://github.com/DerekCresswell/GameDesign11/blob/master/2%20Dice%20Game/1%20UnityScripts.md/#classes
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance
https://docs.unity3d.com/ScriptReference/MonoBehaviour.Start.html

2/22/22, 10:49 AM GameDesign11/2 CodeStructure.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/2 Dice Game/2 CodeStructure.md 4/8

When we press play in our game if our script is loaded onto an object (we'll get to that
later) the Start function on that script (if there is one) is run.

Since we want our code to run by itself we will write it inside this function we can type it on
the line after void Start() { but before the } .
Let's type this in Debug.Log("Hello World"); . For now just write this exactly, and we'll
customize it later.
The function should look like this :

Syntax

Before we continue we should talk about the spacing being used. You'll notice that the
Start and Update functions are tabbed in and now the Debug.Log is tabbed in again.

This is to ensure our code is "readable" so when you have to come back to it or someone
else wants to look at the code it is very easy to see where everything is and what it does.
The main idea with tabbing in our code is that we want to be able to see what is inside
what. Debug.Log is inside our Start function. We know this because of the curly braces.
So we make Debug.Log indented a little further than start.
Most editors (like the one Unity will have opened for you) automatically indent your code
and help maintain a standard "Syntax". Syntax is our fancy word for the formatting of code.

There are tons of rules you can follow for writing syntactically nice code. Certain people
prefer certain rule sets over others. This is mainly down to personal choice but it is
extremely encouraged to follow a rule set, otherwise you will not have a good time.
There are too many rules to go over here, so we will give you this resource to read up on.
Not everything might make sense now but as we move on continue to refer back to it.

There are three points of syntax we will touch on specifically.

White Space

White space is spaces " " just like that. C# is a white space insensitive language.
Meaning :

void Start() {
 Debug.Log("Hello World");
}

 void Start () {
Debug . Log ("Hello World") ;
 }

https://medium.com/@egonelbre/psychology-of-code-readability-d23b1ff1258a
http://mrbool.com/importance-of-code-indentation/29079
https://dzone.com/articles/10-tips-how-to-improve-the-readability-of-your-sof
https://www.oreilly.com/library/view/programming-c/0596001177/ch03s04.html

2/22/22, 10:49 AM GameDesign11/2 CodeStructure.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/2 Dice Game/2 CodeStructure.md 5/8

That will run just as well as what we had above.
Just remember that if you ever code like this and someone tries to use your code they
might try to snuff you out.
Just because you can does not mean you should.

Note that inside of quotes "" is white space sensitive. You'll find out why in the next lesson.

Case Sensitivity

Case or capitalization is important in C#. Debug.Log() is not the same as debug.log() or
deBUG.loG() .

Almost every pre-written function in Unity is written in "UpperCamelCase".
UpperCamelCase is a type of CamelCase. CamelCase is a naming convention in which
words are written with no spaces and instead use capitals to denote each word.
UpperCamelCase just means that the first letter is capitalized along with the first of each
subsequent word.

So my code program is written in UpperCamelCase as MyCodeProgram . As you'll notice this
is the same as Unity's functions like Start or UnityEngine .
It is typically recommended to use this yourself in order to have your code look the same
as to avoid confusion.

Now that is for Unity's functions, classes, and the likes. Unity does use lowerCamelCase for
its variables. We will talk about what variables are in the next lesson. For now just know
they are written in lowerCamelCase. You can likely guess what that means.

A variable we wanted to call my great variable would actually be called
myGreatVariable . We'll leave the examples alone for now. Again it is usually

recommended to follow these guidelines.

Comments

We already talked about comments in the last lesson but will mention them again.
Comments are invaluable to keep track of code you write. You might think you can
remember it all but trust us, you can not.
Use comments to quickly tell you what a block of code, or function, does. You don't need
to use it for obvious things.

Good : // Returns the average of all elements in an array

Bad : // Adds two numbers or // blahh it does some stuff

https://whatis.techtarget.com/definition/UpperCamelCase
https://whatis.techtarget.com/definition/lowerCamelCase
https://github.com/DerekCresswell/GameDesign11/blob/master/2%20Dice%20Game/1%20UnityScripts.md/#comments

2/22/22, 10:49 AM GameDesign11/2 CodeStructure.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/2 Dice Game/2 CodeStructure.md 6/8

All the code written in these lessons will be using a preferred syntax. It's recommended to
use it as well until you understand enough to figure out what you'd prefer and set up your
editor to help.
Just follow along with my spacing and indenting but remember it does not need to be
exact. You'll pick up these skills along the way.

Here is a little write-up of the syntax used in these courses if you'd like to use it.

Adding Scripts To Objects

Save this script and return to Unity.
Now we need to put our script into the scene. We do this the same way we put a
component on our object.
Let's just create a new "Empty Object" and give it a name.
Click onto it and add our script to it. Just like you would with the collider. The name of the
component will be the same you gave the script.
It should look like this after :

Now hover over "Window" along the top bar, go down to "General", and then find and
click on "Console". This brings up the Console which is where Unity will type messages for
us from errors, code, and the likes.
With this open, run the game. You should see :

https://github.com/DerekCresswell/GameDesign11/blob/master/2%20Dice%20Game/Syntax.md
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://github.com/DerekCresswell/GameDesign11/blob/master/2%20Dice%20Game/Images/ScriptOnObject.JPG
https://docs.unity3d.com/Manual/Console.html
https://github.com/DerekCresswell/GameDesign11/blob/master/2%20Dice%20Game/Images/ConsoleMessage.JPG

2/22/22, 10:49 AM GameDesign11/2 CodeStructure.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/2 Dice Game/2 CodeStructure.md 7/8

And there you go. You've written code and passed the age-old tradition of saying "Hello
World".
Now how did we do this? This might seem like a lot of info but trust me, once you get it all
on paper you can break it down easier.
Let's start small and work upwards.

How This Works

What does Debug.Log("Hello World"); actually do? There's four parts to this :

1. Debug is a class in Unity. We mentioned classes in the last lesson. In this case the class
Debug contains lots of different functions we can use to "debug" or find and fix

problems in our game.
To use the Debug class simply type it and make sure you have using UnityEngine; at
the top of your code.

2. Log() is one of the functions in the class Debug . In this case the Log function
"prints" out text into the Console that we opened up a moment ago.
Because this function is part of the Debug class we need to call from the class. What
this means is if were to just call Log("Hello World"); our code would error. Feel free
to try this if you want to see for yourself.
They way we call Log on Debug is by using the period . or the dot as it is
commonly referred to. The dot allows us to "access" function or variable from
something like a class.
When we write Debug.Log we are calling the Log function that is part of the Debug
class.
We also have the brackets, () . These are similar to the curly braces but rather than
containing the code to make up a function or class they contain the values "passed"
into our function.

3. "Hello World" is a "string" passed as a value into the function Log . These values
must be within the brackets () of the function.
In the next lesson we'll talk about what string means so for now just call it a value. A
function can take values and use them to do just about anything, in our case write out
the value.
The quotation marks "" are specific to strings and not any value passing into a
function.

https://blog.hackerrank.com/the-history-of-hello-world/
https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/intro-to-csharp/introduction-to-classes
https://github.com/DerekCresswell/GameDesign11/blob/master/2%20Dice%20Game/1%20UnityScripts.md
https://docs.unity3d.com/ScriptReference/Debug.Log.html
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/member-access-operators
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/passing-value-type-parameters
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/reference-types

2/22/22, 10:49 AM GameDesign11/2 CodeStructure.md at master · DerekCresswell/GameDesign11 · GitHub

https://github.com/DerekCresswell/GameDesign11/blob/master/2 Dice Game/2 CodeStructure.md 8/8

4. ; denotes the end of a command. A command can be setting variables, functions,
and a bunch more. Typically, every line of code (not of the text editor) needs to end
with a semicolon.
Obviously there is not a semicolon after the curly braces. We should hesitate to say
this is a rule but it is the norm.

As shown above we have looked the structure that upholds the rules of code. Code not
written with these rules will error and not run.
In the next lesson we will go over some more of the building blocks of code and will begin
to manipulate data.

